Learning Probabilistic Models of Word Sense Disambiguation

نویسنده

  • Ted Pedersen
چکیده

This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesian model is found to perform well. An explanation for this success is presented in terms of learning rates and bias-variance decompositions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Sense Disambiguation Using Bilingual Probabilistic Models

We describe two probabilistic models for unsupervised word-sense disambiguation using parallel corpora. The first model, which we call the Sense model, builds on the work of Diab and Resnik (2002) that uses both parallel text and a sense inventory for the target language, and recasts their approach in a probabilistic framework. The second model, which we call the Concept model, is a hierarchica...

متن کامل

A New Supervised Learning Algorithm for Word Sense Disambiguation

The Naive Mix is a new supervised learning algorithm that is based on a sequential method for selecting probabilistic models. The usual objective of model selection is to nd a single model that adequately characterizes the data in a training sample. However, during model selection a sequence of models is generated that consists of the best{{tting model at each level of model complexity. The Nai...

متن کامل

Search Techniques for Learning Probabilistic Models of Word Sense Disambiguation

The development of automatic natural language understanding systems remains an elusive goal. Given the highly ambiguous nature of the syntax and semantics of natural language, it is not possible to develop rule-based approaches to understanding even very limited domains of text. The difficulty in specifying a complete set of rules and their exceptions has led to the rise of probabilistic approa...

متن کامل

A New Supervised for Word Sense

The Naive Mix is a new supervised learning algorithm that is based on a sequential method for selecting probabilistic models. The usual objective of model selection is to find a single model that adequately characterizes the data in a training sample. However, during model selection a sequence of models is generated that consists of the best-fitting model at each level of model complexity. The ...

متن کامل

Joint Learning of Preposition Senses and Semantic Roles of Prepositional Phrases

The sense of a preposition is related to the semantics of its dominating prepositional phrase. Knowing the sense of a preposition could help to correctly classify the semantic role of the dominating prepositional phrase and vice versa. In this paper, we propose a joint probabilistic model for word sense disambiguation of prepositions and semantic role labeling of prepositional phrases. Our expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0707.3972  شماره 

صفحات  -

تاریخ انتشار 1998